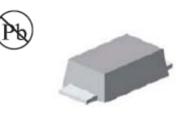


Features

- Low profile package
- Ideal for automated placement
- Ultrafast reverse recovery time
- Low power losses, high efficiency
- Low forward voltage drop
- High surge capability

Mechanical Date

JESD22-B102


 High temperature soldering: 260℃/10 seconds at terminals

• Case: MSMA molded plastic

• Component in accordance to RoHS 2002/95/1 and WEEE 2002/96/EC

• Terminals: Solder plated, solderable per

• Polarity: Laser band denotes cathode end

MSMA

MASL22~MASL24

Schottky rectifier

Major Ratings and Characteristics

I _{F(AV)}	2.0 A
V _{RRM}	20 V, 30V, 40V
I _{FSM}	50 A
V _F	0.40V
T _j max.	125 °C

Maximum Ratings & Thermal Characteristics

Items	Symbol	MASL22	MASL23	MASL24	UNIT
Maximum repetitive peak reverse voltage	V _{RRM}	20	30	40	V
Maximum RMS voltage	V _{RMS}	14	21	28	V
Maximum DC blocking voltage	V _{DC}	20	30	40	V
Maximum average forward rectified current	I _{F(AV)}	2			А
Peak forward surge current 8.3 ms single half sine- wave superimposed on rated load	I _{FSM}	50			А
Voltage rate of change (rated V_R)	dv/dt	10000			V/µs
Thermal resistance from junction to lead ⁽¹⁾	R _{θJL}	35			°C/W
Operating junction and storage temperature range	T _{J,} T _{STG}	-65 to +125			°C

Note 1: Mounted on P.C.B. with 0.2 x 0.2" (5.0 x 5.0mm) copper pad areas.

Electrical Characteristics (T_A = 25 °C unless otherwise noted)

Items	Test conditions		Symbol	Min	Туре	Мах	UNIT
Instantaneous forward voltage	I _F =2.0A ⁽²⁾		V _F	-	-	0.40	V
Reverse current	V _R =V _{DC}	T _j =25℃ T _j =100℃	I _R	-	-	0.5 10	mA

Note 2: Pulse test:300µs pulse width,1% duty cycle.

MASL22~MASL24 Schottky rectifier

Characteristic Curves (T_A=25 °C unless otherwise noted)

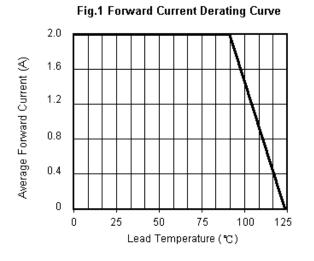
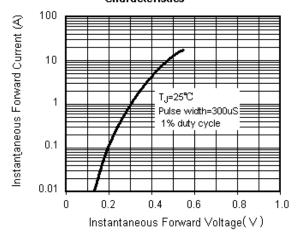



Fig.3 Typical Instantaneous Forward Characteristics

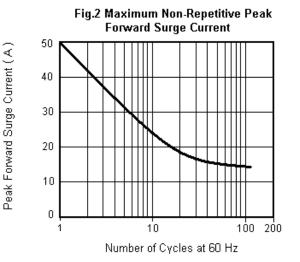
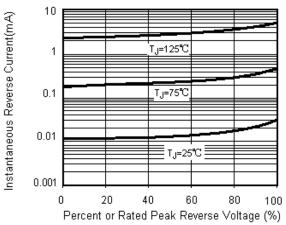
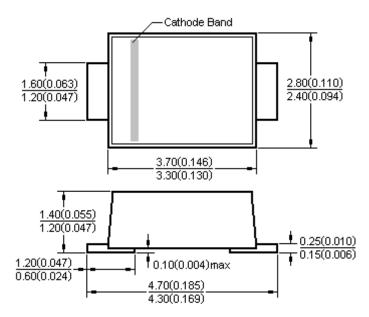



Fig.4 Typical Reverse Leakage Characteristics



MASL22~MASL24 Schottky rectifier

Package Outline

Dimentsions in millimeters and (inches)

Notice

- Product is intended for use in general electronics applications.
- Product should be worked less than the ratings; if exceeded, may cause permanent damage.or introduce latent failure mechanisms.
- The absolute maximum ratings are rated values and must not be exceeded during operation. The following are the general derating methods you design a circuit with a device.

 $I_{F(AV)}$: We recommend that the worst case current be no greater than 80% .

- T_J : Derate this rating when using a device in order to ensure high reliability. We recommend that the device be used at a T_J of below 100°C.
- TRR is registered trademark of Zhejiang TRR Microelectronics Inc. Zhejiang TRR Microelectronics Inc reserves the right to make changes to any product in this specification without notice.
- Zhejiang TRR Microelectronics Inc does not assure any liability arising out of the applications or use of any product described in this specification.
- Zhejiang TRR Microelectronics Inc advises customers to obtain the latest version of the device information before placing orders to verify that the required information is current.